Polysialic acid and Siglec-E orchestrate negative feedback regulation of microglia activation


Thiesler H, Beimdiek J, Hildebrandt H

Cell mol Life Sci 2020


Polysialic acid (polySia) emerges as a novel regulator of microglia activity. We recently identified polysialylated proteins in the Golgi compartment of murine microglia that are released in response to inflammatory stimulation. Since exogenously added polySia is able to attenuate the inflammatory response, we proposed that the release of polysialylated proteins constitutes a mechanism for negative feedback regulation of microglia activation. Here, we demonstrate that translocation of polySia from the Golgi to the cell surface can be induced by calcium depletion of the Golgi compartment and that polysialylated proteins are continuously released for at least 24 h after the onset of inflammatory stimulation. The latter was unexpected, because polySia signals detected by immunocytochemistry are rapidly depleted. However, it indicates that the amount of released polySia is much higher than anticipated based on immunostaining. This may be crucial for microglial responses during traumatic brain injury (TBI), as we detected polySia signals in activated microglia around a stab wound in the adult mouse brain. In BV2 microglia, the putative polySia receptor Siglec-E is internalized during lipopolysaccharide (LPS)-induced activation and in response to polySia exposure, indicating interaction. Correspondingly, CRISPR/Cas9-mediated Siglec-E knockout prevents inhibition of pro inflammatory activation by exogenously added polySia and leads to a strong increase of the LPS response. A comparable increase of LPS-induced activation has been observed in microglia with abolished polySia synthesis. Together, these results indicate that the release of the microglia-intrinsic polySia pool, as implicated in TBI, inhibits the inflammatory response by acting as a trans-activating ligand of Siglec-E.

Reduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice


Klaus C, Hansen JN, Ginolhac A, Gérard D, Gnanapragassam VS, Horstkorte R, Rossdam C, Buettner FFR, Sauter T, Sinkkonen L, Neumann H, Linnartz-Gerlach B

Neurobiol Aging. 2020 Apr; 88:91-107


Sialic acid-binding Ig-like lectin (Siglec) receptors are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months. A transcriptomic analysis revealed no pro-inflammatory changes indicating an innate homeostatic immune process leading to the removal of synapses and neurons in GNE+/- mice during aging. Crossbreeding with complement C3-deficient mice rescued the earlier onset of neuronal and synaptic loss as well as the changes in microglial arborization. Thus, sialic acids of the glycocalyx contribute to brain homeostasis and act as a recognition system for the innate immune system in the brain.

Minimal B Cell Extrinsic IgG Glycan Modifications of Pro- and Anti-Inflammatory IgG Preparations in vivo


Schaffert A, Hanić M, Novokmet M, Zaytseva O, Krištić J, Lux A, Nitschke L, Peipp M, Pezer M, Hennig R, Rapp E, Lauc G, Nimmerjahn F

Front Immunol. 2020 Jan 9; 10:3024.


Select residues in the biantennary sugar moiety attached to the fragment crystallizable of immunoglobulin G (IgG) antibodies can modulate IgG effector functions. Thus, afucosylated IgG glycovariants have enhanced cytotoxic activity, whereas IgG glycovariants rich in terminal sialic acid residues can trigger anti-inflammatory effects. More recent evidence suggests that terminal α2,6 linked sialic acids can be attached to antibodies post IgG secretion. These findings raise concerns for the use of therapeutic antibodies as they may change their glycosylation status in the patient and hence affect their activity. To investigate to what extent B cell extrinsic sialylation processes modify therapeutic IgG preparations in vivo, we analyzed changes in human intravenous IgG (IVIg) sialylation upon injection in mice deficient in B cells or in mice lacking the sialyltransferase 1, which catalyzes the addition of α2,6 linked sialic acid residues. By performing a time course of IgG glycan analysis with HILIC-UPLC-FLR (plus MS) and xCGE-LIF our study suggests that therapeutic IgG glycosylation is stable upon injection in vivo. Only a very small fraction of IgG molecules acquired sialic acid structures predominantly in the Fab- but not the Fc-portion upon injection in vivo, suggesting that therapeutic antibody glycosylation will remain stable upon injection in vivo.


©2020 FOR 2953. Erstellt mit

Legal notice | Privacy policy